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EXECUTIVE SUMMARY 
This project focuses on a type of transportation that is currently left out of V2X conversations: 
bicycling. The project demonstrates how an inexpensive system can add new functionality to 
existing signal controllers, giving bicyclists an efficient way to cross a controlled intersection. 
The system proposed and demonstrated integrates three components: (1) a Bike Connect box that 
resides near the signal-controller and is connected to it, (2) an application that runs on a Bike 
Connect device (currently an iPhone) and requests a green light at the correct approach-distance, 
and (3) a cloud-based publish/subscribe (pub/sub) component that handles communication 
between phone app and box.  

As a separate project we developed a set of video lessons that provide a clear and detailed 
roadmap for giving students a chance to explore V2X technology and, in the end, produce 
something that can be used in their own community, i.e., the Bike Connect box. This related 
project can be referenced at Project Phenom. It contains course topics on: (1) Doing electronic 
(solderless) breadboarding to connect a modern Internet of Things device, a cellular embedded 
computer, into the heart of their system. (2) Demonstrating how the embedded computer (a 
Particle Electron) can easily control relays, which provide the virtual push-button. (3) Packaging 
up their system into a container that can be placed on a signal pole. (4) Lessons on how to 
employ C++ and object-oriented programming to control the Electron from the cloud. When 
completed, a student will have built a key component of the proposed system. 

In this project report we will highlight the technology that has allowed us to implement the other 
2 components of the system: the Bike Connect device and its application; the pub/sub component 
that manages communication in the system. We will focus, in particular, on one challenge we 
faced with the phone application, that of determining an accurate distance measure for a bike 
rider using our application. With an accurate distance measure, the phone application can 
calculate when to place a green request as the bike rider approaches the intersection. 

The full system was made operational in spring of 2018 and is now in beta testing. Please contact 
the author, Stephen Fickas (fickas@cs.uoregon.edu), for more information. 

1.0 INTRODUCTION 
In the rush to develop and install smart-transportation (V2X) systems so that they can support 
connected and autonomous vehicles, people on bike seem to be generally left out. At best, 
bicycles are viewed as obstacles to be ‘seen’ and avoided by sensored-up cars. This is an 
extremely limited view of the future, especially at a time when cities are significantly investing 
in bicycle infrastructure and bike share systems, and where the private sector has discovered a 
possible transportation market in bike and scooter share systems.  

This project focused on integrating cyclists purposefully into the connected systems environment 
by developing direct and indirect means for people on bike to interact virtually with signal-
controlled intersections in an eventual effort to improve safety and efficiency.  Through the 
development of a low-cost traffic signal box add-on and a phone app, we were able to add virtual 
requests and useful information to cyclists’ experiences at the location tested in Eugene, Oregon. 

https://nitc.trec.pdx.edu/research/project/1072
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Figure 1: Illustration of Bike Connect System. The project developed V2X technology by constructing a Bike Connect device that 
can communicate with a Bike Connect box (circled) to trigger a green light from a distance. 

In this project report, we will highlight the technology that has allowed us to implement our 
vision of giving bikes an effective means to integrate with a city’s transportation grid, which we 
call the “Bike Connect” system. We have implemented both a Bike Connect box and a Bike 
Connect device (in the form of an iPhone app) for use at an intersection along a major bike-
corridor in Eugene. We used a publish/subscribe (pub/sub) software architecture and explored a 
number of GPS algorithms for calculating distance, direction, and speed traveled by a cyclist.  
The entire system was field tested in Eugene, on its busiest bicycle corridor, the intersection of 
Alder and 18th.  We describe our approach and results in more detail in the following sections. 

2.0 BIKE CONNECT SYSTEM OVERVIEW 
The Bike Connect System is designed to enhance the experience, comfort, efficiency, and safety 
of people on bike by making traffic signal processes and information more cyclist attentive.  The 
core aspect of the Bike Connect system is to increase the likelihood that someone on bike will 
experience a green light when approaching a signal.  There are two primary aspects of this effort: 
1) active traffic signal engagement by approaching bicycle users; and 2) passive information
sharing to cyclists of traffic signal status. This project tackles active engagement. We discuss our
ideas for passive engagement in the Future Work section.

On the active engagement side, we have developed a low cost, add-on control box that can attach 
to any traffic signal control box in the nation and allow for cell connectivity to cyclists through a 
secure app, which we have also developed for testing purposes.  The system essentially ‘calls’ 
the traffic signal in advance of an approaching cyclist based on the direction and speed of travel 
in order to maximize the likelihood of a green when arriving at an intersection with variable 
timed signals – like virtually pressing the crosswalk button in advance.  There are four benefits 
from this new infrastructure: 

1. The signal turns green in advance of the cyclist arriving based on the virtual call to
the signal;
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2. If the signal sequencing does not allow for transitioning to a green for the cyclists
prior to arrival, the signal will turn green much faster because of the advance
notification;

3. Loop detectors in the ground (or video or laser) are no longer
needed nor is it needed to educate cyclists where to position a bike
to put a call into the signal (this benefit should not be
underestimated and is a particular problem at the intersection where
the field test took place); and

4. Cyclists’ adherence to the signal (i.e. waiting for the green instead of crossing against
a red) increases because the user knows the signal has been alerted to her/his
presence.

The following outlines how the system works: 

• We attached the Bike Connect ‘box’ to a specific traffic control signal box (i.e.,
18th and Alder, Eugene). The box listens for requests from bicyclists and when
one is received, signals the controller through normal means. More details are
given in section 4.

• A cyclist downloads our app from the app store and registers using their email
account.

• At the start of a trip, the cyclist starts the phone app (‘Urban Bike Buddy’), which
establishes communication with the control box. The app shows a yellow bar to
alert the user that communication is established.

• When the cyclist is within a predetermined time to reach the intersection
(calculated from distance and speed), the app places a request to the box. When
the box acknowledges the request, a green bar is shown on the app.

• The system resets after the bicyclist has crossed the intersection.

The main interface for the Bike Connect system app, called 'Urban Bike Buddy', is shown in 
figure 2 The ‘Start Trip’ button starts communication between the app and the bike box. The 
gray box changes color: yellow – communication is established; green – a request has been sent 
to the box and acknowledged. The Amazon logo initiates voice-activated 2-way controls via the 
Alexa system, which was not an official component of this project, but one that received some 
initial testing to create a screen-free option for cyclists.The app can run in background mode, 
which frees the user from always remembering to start the app at the beginning of a trip. 
However, the user then loses the color-coded visual cues. We are working on a sound system that 
can be used in background mode to complement the visual cues. In particular, we would like to 
give a rider the option to carry their phone in a backpack and still hear a chirp when a request has 
been made. 

'Urban Bike Buddy' 
app icon 
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Figure 2: Bike Connect Phone App Interface.  

3.0 FIELD TESTING LOCATION 
Once the Bike Connect control box and basic app functionality and communication systems with 
the control box were developed in the lab, the system was field-tested.  Working with the City of 
Eugene traffic engineering team, the system was deployed at the corner of Alder and 18th.  
Eugene is a Gold level bike friendly community and Alder is Eugene’s most traveled bicycle 
corridor, connecting southern neighborhoods to the University of Oregon, downtown, and an 
extensive river path system.  In the 1970s, Alder became the first street in the nation to have a 
contraflow bicycle lane (13th - 18th Streets), directly adjacent to the University of Oregon. Alder 
is a bicycle boulevard in the southern residential portion (40th to 19th Streets) and in 2012, Alder 
was re-designed from 19th to the river (approximately 5th Street) largely as a two-way buffered 
bike lane with a two block portion a protected 2-way bike lane with car parking serving as the 
physical buffer.   

The intersection of Alder and 18th is central to this corridor and is a variable timed signalized 
intersection with a bicycle-only signal for Alder travel.  Loop detectors and advanced loop 
detectors currently exist in both directions on Alder to recognize the presence of bicycles.  When 
initially installed, bike detection was done by signal-mounted video detection, but was switched 
to loop detectors when the video could not be reliably calibrated. The loop detector senses a bike 
at the stop-line and places a request on the bike phase. From on-site observation we noticed that 
many cyclists waited for the light at the wrong location (did not trigger the detector), became 
frustrated, and went against a red light. 
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Figure 3: Alder Street section adjacent to University of Oregon. Alder St., equal allocation to bicycle travel (on right) as 
motorized vehicle travel (on left).  (Source: Google Street View, August 2017 (accessed 7/4/2018)). 

 

Figure 3: Intersection of Alder and 18th (looking south). Intersection of Alder and 18th (looking south) with signal phases for 
bike only (left) and car only (right) and the terminal loop detector bottom left (many people on bike wait in the crosswalk not 
knowing what the bike loop detector symbol is for). (Source: Google Street View, August 2017 (accessed 7/4/2018)). 
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Figure 4: Intersection of Alder and 18th (looking north). Intersection of Alder and 18th (looking north) with bike-only signal 
(18th is one-way the other direction at this location).  (Source: Google Street View, August 2017 (accessed 7/4/2018)). 

 

4.0 BIKE CONNECT SYSTEM ARCHITECTURE  
In this section we will describe the overall system architecture that supports our efforts. There 
are 3 main components: (1) a Bike Connect box that connects to a signal controller, (2) a Bike 
Connect device that is a phone running our application, and (3) a cloud service that handles 
communication between box and device. We will describe the role of each of these 3 
components in this section. 

THE BIKE CONNECT BOX 

At the heart of the box is a Particle Electron ($65), Particle’s cellular IoT platform. Briefly, the 
Electron provides limited cell-service to the box for a reasonable price - $3/month. The Electron 
supports C++ applications and has a GPIO pin breakout. We used the GPIO pins to connect to 
and control relays in the box. The relays, in turn, were connected to the signal controller (a 
McCain 2070 controller, though NEMA controllers would connect in similar fashion) to place a 
request to the bike-phase at the intersection.  The set-up is as follows: [bike connect box]  [DC 
Isolator]  [C-1 pin]  [Controller]. The DC Isolator allows the output signal from our box to 
interact with the controller hardware.  

The cellular connection is to the Particle Cloud, which we will discuss shortly. Further details on 
the box, including how to build a box and program it, are found in the Project Phenom report. 

https://nitc.trec.pdx.edu/research/project/1072
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THE BIKE CONNECT DEVICE 

We chose to focus on the Apple iPhone as the first device we piloted. All iPhone models 
since the iPhone 4 come with an integrated GPS receiver.  The model 7 used for testing 
has the following sensors: touch ID fingerprint sensor, barometer, three-axis gyroscope, 
accelerometer, proximity sensor, and ambient light sensor. The iPhone 7 is powered by  
the Apple A10 Fusion system on  a chip (SoC). The A10 has four CPU cores with a 
maximum CPU clock of 2.34 Ghz.  The A10 is  the first Apple-designed quad-core 
SoC, with two high-performance cores and two energy-efficient cores. Also embedded 
into the A10 is the M10 motion coprocessor, which services the accelerometer, 
gyroscope, compass, and barometer.  In addition, the iPhone 7 has 2GB of LPDDR4 
RAM, a 12 megapixel camera, a 7-megapixel front-facing camera, and a 4.7-inch 
Retina HD LED-backlit widescreen that has a resolution of 1,334 x 750 pixels at 326 
ppi. Figure 6 shows the phone on the handlebars. However, note that the phone does 
not have to be mounted on the handlebars to operate. It will also work effectively in a 
pocket or bag and will run in both foreground and background mode. 

 
Figure 5: IPhone on handlebar 

One of the sensors we rely on is GPS. We need to determine the distance of the user 
from the intersection to do effective timing of the request for a green. The criticality of 
accurate GPS readings motivated the project team to focus on improving the raw 
readings we obtained from the GPS chip. 



8 
 

THE BIKE CONNECT SOFTWARE 

The iPhone app was written in Swift. Apple’s Xcode 9 was used as the integrated 
development environment (IDE). Apple provides a full software suite for developing 
iOS applications, which includes the code editor, compiler, and a simulator to test the 
device. In addition, Xcode comes with a powerful debugger. When running the 
application on a device attached to the development machine, the debugger can display 
CPU usage, memory consumption, disk usage, and network usage to allow detailed 
performance analysis. If this information is insufficient, there is also a profiling tool 
provided with Xcode called Instruments. Figure 7 gives an example of the CPU and 
Disk analysis gauges. 

 

Figure 6: CPU gauge (left) and Disk gauge (right) 

 

CLOUD SERVICES 

We chose to separate the box and device communication through a middleman, i.e., a 
cloud service. This followed from our initial (and unsuccessful) attempts of using P2P 
communication (i.e., direct device to box communication) through Bluetooth and WiFi. 
The upside to the P2P approach is that neither box nor device requires Internet access. 
And in particular, the phone does not require a data plan. However, there are also 
downsides: 

• We need Internet communication with the box to monitor its operation and 
make changes to its software. No Internet (neither wired nor WiFi) was 
available at the box location. We found cellular was needed. 

• Bluetooth is advertised as having a 100-meter range. However our tests 
showed the range to vary widely from 10 meters to 50 meters. 
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• The Bluetooth “handshake” of establishing secure communication between 
box and bike also varied from milliseconds to seconds and sometimes failed 
entirely. 

• We had similar issues with a WiFi handshake: establishing secure 
connections between the box (running a WiFi access point) and the device (a 
client) varied in time. 

• Even with secure communications, we were reluctant to place the box in an 
open P2P environment. 

For all of these reasons we chose to have the iPhone device use its own cell service to 
communicate with the box through a cloud service. However, we have not lost the goal 
of allowing bike riders without a cell plan to participate. During the grant period, we 
experimented with building a bike-computer from basic and inexpensive parts. In 
particular, we explored a bike computer with a Particle Electron at its core. This does 
not remove the need for a cell plan, but reduces it to $36/year. Figure 8 shows a 
prototype that we were pleased with.  

 

Figure 7: Prototype Bike Computer in a box and stuffed into small bike bag. 

Given that both box and device in our trials had persistent cloud connections, we next 
considered a means for them to communicate. The Particle Cloud implements what is 
called a publish/subscribe (or pub/sub) service. For our past IoT projects, we have found 
that a pub/sub architecture greatly simplifies the actual application code that needs to be 
written. And simpler code leads to fewer bugs and is easier for humans to understand.  
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The pub/sub service of the Particle Cloud works as follows. A set of functions are defined as 
cloud-accessible on the Bike Connect box, i.e., C++ functions are written on the Particle 
Electron and marked as cloud-accessible. In essence, these functions “subscribe” to (listen 
for) events. The Bike Connect device, i.e., the Swift code running on the iPhone, publishes 
events. An event in this case is a request for a green light. The Particle Cloud connects the 
publisher (Swift code requesting a green) with the subscriber (C++ function that closes the 
relay). Another subscriber that is built-in to the Electron operating system is an “update 
application software”. This allows the system developers to change (publish) the application 
software on the Electron over the air, also known as over-the-air programming. Given that the 
box is up on the signal pole, this is a huge advantage. 

The pub/sub service also scales. Any number of boxes (signals) can be subscribers. Any number 
of devices (bikes) can be publishers. For example, a bicyclist traveling on a signalized corridor 
could publish to each signal box as it becomes next in line. The Particle Cloud handles the 
multiplexing of messages (see Figure 9). 

Finally, the pub/sub service allows more than devices to subscribe. We were able to write a 
logging subscriber that hears all published messages and logs them in a separate database we 
maintain. These log files can be processed offline and do not require any special logging 
code to be built-in to either the box’s C++ software or the Swift device software.  

 

Figure 8: The Electron Particle Cloud 
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A critical function of our system is to determine, in real time, the distance traveled by a user. 
With this information we can calculate both speed and when the user enters and exits the 
triggering circle around an intersection. Our prime interest is in biking and walking, both slow-
speed modes of travel when compared to motor-vehicles. Our initial testing results showed that 
calculating distance for slow-speed travel was a challenge. We decided to see if we could 
improve slow-speed accuracy as part of this project. The following sections layout the problem 
and our solution. 

CALIBRATING GPS  

The Global Positioning System (GPS) was developed and launched by the United States 
government in the 1970s for use by the military. In the 1980s it was made available for civilian 
use. The goal of GPS is to allow a device to accurately locate itself from anywhere on Earth at 
any time. To achieve this goal, GPS consists of a series of 24 satellites orbiting the Earth in a 
pattern such that at any time and from any location at least 4 satellites will be electronically 
visible (Hofmann-Wellenhof, Lichtenegger, & Collins, 2012, p. 4). Each GPS satellite 
continuously broadcast a signal with information about its location as well as its current clock 
time. GPS receivers listen to this broadcast and through calculating the current location of the 
satellites via propagation delay and triangulation, its location relative to the satellites can be 
calculated. This location can then be transformed into a latitude and longitude coordinate on 
Earth. There is inherent error in the location calculation, but under optimal conditions the 
location calculated will be within 5 meters of the actual location of the receiver.  

SOURCES OF ERROR 

There are many sources of error that can occur when transmitting a GPS signal from the satellites 
to the receivers. Much of this error can be accounted for, such as clock drift of the satellites and 
signal propagation delay in the upper atmosphere (Grewal, Weill, & Andrews, 2007, p. 103-
130). To account for the clock drift, the satellites will periodically synchronize their clock with a 
common clock. The small drift between synchronizations will have a negligible effect on the 
overall location calculation. The signal propagation delay through the upper atmosphere can be 
accounted for by calculating the typical signal propagation delay based on the position of the sun 
relative to the rotation of the Earth. Given that conditions in the upper atmosphere rarely change 
unpredictably, this delay can be calculated with high accuracy. 

There are some sources of error that cannot be accounted for in the location calculation. This 
error is the cause of the 5 meters of uncertainty in the location calculation, even under optimal 
conditions.  The primary sources of this error are signal propagation in the lower atmosphere and 
signal multipath delay. Signal propagation delay in the lower atmosphere occurs when the signal 
is slowed by bumping into particles in the air such as water particles in clouds. As the weather 
changes so does the signal propagation delay making it impossible to account for. The largest 
source of error comes from multipath delay. Multipath delay occurs when the signal bounces off 
objects before arriving at the receiver. As it is impossible to determine how many times the 
signal has bounced and off what types of objects, there is no way to calculate the delay. 
Multipath delay is most noticeable when the receiver is near a building, leading to a large 
variation in the location calculation between readings. The error will typically be much larger 
than the 5 meters of error as is typical under optimal conditions. 
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PREVIOUS WORK 

There has been much work in improving the accuracy of GPS location calculation while walking 
using both GPS and an Internal Navigation System (INS) (Cho, Mun, Lee, Kaiser, & Gerla, 
2010; Eliasson, 2014; Godha, Lachapelle, & Cannon, 2006). This was accomplished by attaching 
an INS device to a person, often on their foot, and using a Kalman filter combining the data from 
the INS device with the GPS coordinate to better determine the actual position of the person. The 
purpose of the INS device was to determine when the person was taking a step. With previous 
knowledge of the test subjects stride length, the GPS coordinate received could be more 
accurately calculated. 

Another study tested the use of a Kalman filter to increase the accuracy of GPS coordinate 
measurements (Eliasson, 2014). A Kalman filter is an algorithm used to better estimate the actual 
value of data that contains inaccuracies. It does this by looking at the measurements over time to 
make a prediction of the current state. In the case of GPS, the current state is the location of the 
receiver. The Kalman filter averages the predicted state and the measured state to estimate a 
more accurate location measurement. The average is weighted based on the known noise level of 
the reading. In the case of GPS, this noise level is calculated by the receiver for each location 
measurement. In this study, Eliasson compared the overall distance measured using the Kalman 
filter against using an averaging method, similar to the algorithm described in section 2.3. They 
found that there was little difference between the averaging method and the Kalman filter. 

In the remaining sections we will describe our own research into dealing with GPS error to 
obtain an accurate value for distance traveled over time. 

DISTANCE CALCULATION METHODS  

Four methods of calculating distance from GPS data were evaluated in this study. A key property 
of each method is their ability to update the distance calculation in real time along with the 
ability to track a wide variety of activity. The intended use of the distance calculation is to 
calculate distance of low speed activity such as waking, biking, jogging, etc. The four methods 
chosen were: (1) calculating distance between raw GPS readings, (2) calculating distance based 
on the speed value provided by the GPS receiver along with the time between GPS updates, (3) 
averaging GPS readings together into a single point, and (4) taking the line of best fit of a 
collection of GPS readings and calculating the distance along that line. Each of these methods 
will be explained in detail in the following sections.  
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RAW GPS DATA 

The first method evaluated was calculating distance from raw GPS data. Raw GPS data is the 
latitude and longitude value determined by the GPS system on a device with no filtering or 
modification of this value. The total distance is calculated by calculating the distance between 
consecutive GPS coordinates, which is calculated using the Haversine formula for measuring the 
distance between two points on a sphere (Chopde & Nichat, 2013). See Equation 1. 

The raw GPS distance calculation method was selected because it is a good baseline of 
comparison for the other methods. The raw GPS data distance calculation does not factor in the 
natural error of GPS readings discussed later in this section. It would be expected that the raw 
GPS data method will over-estimate the total distance traveled. This can be illustrated by 
considering the distance traveled between two points A and B. One path is a straight line 
between A and B and the other path is a zig-zag line between A and B. If the total distance of 
each path is calculated, the zig-zag path will be longer than the straight-line path. To relate this 
back to the raw GPS data distance calculation method, the straight line would be the actual path 
taken and the zig-zag path would be the path calculated due to the error in the GPS readings. See 
Algorithm 1 for pseudocode of the raw GPS data distance calculation. 

The next method evaluated was calculating distance from speed. The Google Location API 
(Google, 2018) exposes a speed value along with the latitude and longitude coordinate for each 
location update. The speed value attempts to capture the velocity the device is moving at the time 
of the location update. The speed value is calculated by the GPS receiver by calculating the 
Doppler shift of the satellite signals received. The Doppler shift can be calculated by comparing 

UpdateDistance (lat, lon): 
 if prev_lat != null && prev_lon != null: 
   distance += haversine(prev_lat, prev_lon, lat, lon) 
 prev_lat = lat 
 prev_lon = lon 

Equation 1: Haversine formula. Distance d is a function of two latitude and longitude coordinates 

This method is called every time the system receives a GPS update from the system. The distance, prev_lat, and prev_lon variables 
are persistent between calls to this method. The haversine function is defined by Equation 1. 

This method is called every time the system receives a GPS update from the system. The distance and prev_time variables are 
persistent between calls to this method. 

Algorithm 1: Pseudocode for distance calculation using raw GPS data 
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the frequency received from each satellite against the expected frequency. With the calculated 
Doppler shift value, a velocity can be determined. (Hofmann-Wellenhof, et al., 2012, p. 6). 
Given that only the total distance of an activity is calculated and not the path taken, the velocity 
value alone can be used to calculate distance between two points. The distance traveled since the 
last location updated is calculated by dividing the speed at the current update by the time that has 
passed since the previous update. See Algorithm 2 for pseudocode of the GPS speed distance 
calculation. 

UpdateDistance (speed): 
   if prev_time != null: 
      distance += speed / (Time.Now - prev_time) 
   prev_time = Time.Now 
 

Algorithm 2: Pseudocode for distance calculation using GPS speed data 
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AVERAGING GPS DATA 

The next method evaluated was calculating distance by averaging a set of raw GPS coordinates. 
This method works by collecting a set of n coordinates and averaging them to form a single 
point. Next, another set of n coordinates are collected and averaged. The distance between the 
two averaged locations is added to the overall distance. The distance between the two 
coordinates is calculated using Equation 1. See Algorithm 3 for pseudocode of the GPS 
averaging distance calculation. This algorithm is similar to the algorithm in Eliasson, 2014. This 
method was chosen because it is more resilient to the error of GPS coordinate readings. The 
assumption is that the error is distributed evenly among a set of GPS readings in relation to the 
actual location of the device. Given this assumption it can be concluded that the average of a set 
of points will be closer to the actual location than an individual reading. However, there is a 
tradeoff between having a large and small n value. Larger n values will reveal a coordinate closer 
to the actual location but will have a longer delay in calculating the distance value due to the 
overhead of collecting all n coordinates before calculating the distance. Due to this delay, the 
distance calculated may cut out large portions of actual distance traveled if the actual path taken 
is not in a straight line. Smaller n values will result in a less accurate location value in relation to 
the actual location of the receiver, but will calculate the distance value more frequently. The 
higher frequency calculation will result in less smoothing of curved paths. 

UpdateDistance (lat, lon, set_size): 
   coord_list.Add(vector(lat, lon))  
    
   if coord_list.Size == set_size: 
      avg_lat = 0 
      avg_lon = 0 
       
      for point in coord_list: 
         avg_lat += point.x 
         avg_lon += point.y 
      avg_lat /= set_size 
      avg_lon /= set_size 
       
      if prev_lat != null && prev_lon != null: 
         distance += haversine(prev_lat, prev_lon, avg_lat, avg_lon) 
          
      prev_lat = avg_lat 
      prev_lon = avg_lon 
      coord_list.Clear() 
 

Algorithm 3: Pseudocode for distance calculation using the average location of a set of GPS coordinates. This method is called 
every time the system receives a GPS update from the system. The distance, prev_lat, prev_lon, and coord_list variables are 
persistent between calls to this method. The haversine function is defined by Equation 1. 



16 
 

LINE OF BEST FIT 

The final method evaluated was calculating distance by looking at the line of best fit for a set of 
points. This method works by collecting a set of n coordinates and calculating the line of best fit 
for those coordinates. After that the estimated length traveled along that line is calculated and 
added to the overall distance. The line of best fit is calculated using the least square method. The 
slope of this line is turned into a normalized directional vector. Using the normalized directional 
vector of the line of best fit, a scalar project is performed with the vector between two 
consecutive points to determine the length traveled along the line of best fit. The Haversine 
formula from Equation 1 is used to calculate the distance along the line segment. The sum of 
these distances calculates the total distance traveled for that set of n coordinates. See Figure 10 
for a visualization of the calculation. See Algorithm 4 for pseudocode of the method. 

 

UpdateDistance (lat, lon, set_size) 
   coord_list.add(vector(lat, lon))  
    
   if coord_list.size == set_size: 
      avg = vector(0,0) 
       
      for point in coord_list: 
         avg += point 
      avg /= set_size 
       
      rise = 0 
      run = 0 
 
      for point in coord_list: 
         rise += (point.x – avg.x) * (point.y – avg.y) 
         run += (point.x – avg.x) ** 2 
       
      best_fit = vector(rise, run).normalized 
      last_point = coord_list[0] 
 
      for i = 1 to set_size: 
         // Vector projection 
         p = dot(best_fit, coord_list[i]-last_point) 
         // Distance along the project line segment 
         distance += haversize(last_point, last_point + (best_fit*p)) 
         last_point = coord_list[i] 
  
      coord_list.clear() 
      // The last point is added to the list to not lose distance between sets 
      // of points 
     coord_list.add(last_point) 

This method is called every time the system receives a GPS update from the system. The distance and coord_list variables are 
persistent between calls to this method. The haversine function is defined by Equation 1. The dot function is a vector dot product. 

Algorithm 4: Pseudocode for distance calculation using the line of best fit of a set of GPS coordinates 
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Figure 10: Visualization of the line of best fit distance calculation method. The numbers indicate order the points were received. 
Note that the points are GPS coordinate readings not the actual location of the receiver. The dashed line shows the directional 
vector of the line of best fit. The solid lines show the distance calculated. 

This method was chosen because, like the averaging method, it is more resilient to GPS error. 
The difference between this method and the averaging method is that this method attempts to 
estimate the actual path taken by the receiver rather than estimating the position of the receiver. 
Like the averaging method there is a tradeoff for using a larger and smaller n value. Larger n 
values will result in a more accurate line of best fit for activity moving in a relatively straight 
line. However, if the path of the activity is along a curved path, the line of best fit will smooth 
the calculated path taken, resulting in a smaller distance calculation than what occurred in reality. 
Smaller n values will result in a less accurate line of best fit but due to the more frequent updates 
will not smooth the calculated path taken as much as larger n values.  

EXPERIMENTAL TESTING 

Each method described was implemented and tested on a variety of activities. For both the 
averaging method and line of best-fit method, an n value of 5 and 10 were tested. The three 
activities chosen to test were biking, walking, and idle. Six devices were used in total. The GPS 
service on each device was configured to receive a location update approximately once every 
second. For each activity tested, four trials were conducted. All six devices were set to collect 
GPS data for each trial resulting in 24 data points per activity. The following pieces of data were 
collected on each device per trial: total distance calculated for each distance calculation method, 
average speed of the device, and maximum speed of the device. All GPS updates for each trial 
were saved to the device to enable playback of the GPS data at a later time. All trials were 
conducted on days with clear skies; optimal weather conditions for GPS data collection. 
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BIKING TEST 

Biking was chosen because it is one of the highest speed non-motor assisted activities commonly 
performed. The biking trials were performed on a biking trail rather than a street to ensure 
consistent trials. To simulate biking on the street, where stopping at intersections is common, 
there was a 30 second stop for every mile of riding. See Figure 11 for an approximate mapping 
of the path taken. Two trials were riding East to West and two trials were riding West to East. 
The exact same path was followed for all four trials. The total actual distance of each trial was 
4.12 miles.  

 

Figure 11: Path taken for the biking trials mapped via Google Maps 

WALKING TEST 

Walking was chosen because it is very low speed and often follows a path that has abrupt 
changes in direction. The walking trials were performed on a residential street. See Figure 12 for 
an approximate mapping of the path taken. All four trials followed an identical path. The total 
actual distance of each trial was 1.0 miles. Each trial was performed continuously without any 
artificial stops. 

Note that the bike route is different than the walking route. We chose each to match the reality of 
our test intersection. Our observation was that bicyclists followed roughly straight paths that 
correspond to the bike lanes and street corridors that surround our test intersection. Pedestrians, 
on the other hand, were observed to follow a variety of paths, and in particular, a convoluted path 
through campus near the test intersection. 
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IDLE TEST 

An idle test was performed to test the accuracy of the distance calculation with no movement. 
Many times, activity such as biking or walking will have brief moments of stopping, e.g., stop 
lights, cross walks, etc. It would harm the accuracy of the overall distance calculation to have 
these moments of stoppage increase the overall distance calculated. Given the natural error of 
GPS readings it would be expected that many of the methods tested would erroneously calculate 
non-zero distance while the device is stationary. The idle test was performed by placing the 
devices on a table outdoors and collecting GPS data for 10 minutes.  

 

 
Figure 9: Path taken for the walking trials mapped via Google Maps 

BIKING RESULTS 

See Figure 13 for the distance calculation results for the biking trials. Bike riders were asked to 
pedal as they normally would on a 4-mile commute. The biking trials resulted in an overall 
average speed of 4.409 meters per second (roughly 9 MPH). The results show that the averaging 
method with an n value of both 5 and 10 are extremely accurate in the distance calculation with 
low variance. The line of best fit and raw GPS data methods both tend to overestimate the total 
distance but also have low variance. The speed method on average vastly underestimates the 
total distance and has a high variance and is an outlier compared to the other methods. Our first 
conjecture was that the speed value is fully dependent of the GPS location readings, and hence, is 
noisy in concordance with noisy location information. However, using raw GPS data was 
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accurate. It remains unclear to us why obtaining accurate speed data is so error-prone. 
Nevertheless, we did find a way to combine raw GPS and speed in an effective way, which we 
will discuss shortly. Given time, we would have liked to have built and explored our own speed 
function from just the raw accelerometer data (Seifert&Camacho, 2007). 

 

Figure 13: Results of the biking distance calculations. The bars in black represent the average distance calculated. The gray bars 
represent the standard deviation. Actual distance traveled was 4.12 miles. 
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WALKING RESULTS 

For the walking trials, walkers were asked to choose their walking speed as they would use on a 
1-mile trip. See Figure 14 for the distance calculation results for the walking trials. The walking 
trials resulted in an average speed of 1.483 meters per second. The results show that the raw GPS 
data method is the most accurate with low variance. The averaging and line of best fit methods 
both underestimate the total distance traveled with low variance. The line of best fit method with 
both n value of 5 and 10 is slightly more accurate than the averaging method. Like the biking 
trials, the speed method underestimates the total distance with a high variance.   

 

Figure 14: Results of the walking distance calculation. The bars in black represent the average distance calculated. The gray 
bars represent the standard deviation. 
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COMPARISON OF BIKING AND WALKING  

To easily have a visual comparison of the methods, the average percent error of each method was 
calculated, see Figure 15. Based on this comparison it is clear that the speed method does a very 
poor job at estimating the distance traveled for each activity. There is a large difference in error 
with both the averaging and line of best fit methods between biking and walking. The most likely 
explanation of this is with the type of paths taken for each of the trials. The biking trials followed 
a relatively straight path while the walking trials followed a path that had many curves and 
corners. These corners were most likely cut off by the smoothing of the averaging and line of 
best fit methods resulting is an underestimate of the total distance. For the raw GPS method there 
was very little difference in the percentage of error between walking and biking. This further 
supports the idea that the smoothing of the averaging and line of best fit methods result in an 
underestimate of distance for winding paths.    

 

Figure 15: Percent error of the total distance traveled of biking and walking 

IDLE RESULTS 

See Figure 16 for the distance calculation results for the idle trials. As expected, the methods that 
rely on GPS coordinates generated a significant amount of distance when it actually should be 0. 
This is likely due to the natural error in the GPS readings from the device. More interestingly, 
the speed method is the only accurate method for calculating distance while not moving. While 
the speed may be highly inaccurate at low speed, it is highly accurate at no speed.  
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Figure 16: Results of the idle distance calculation. The bars in black represent the average distance calculated. The gray bars 
represent the standard deviation. 

A NEW APPROACH: GPS DATA FILTER 

Looking at the results from the previous sections, there is no single best method that accurately 
calculates distance for all three activities: biking, walking, and idle. The raw GPS data, 
averaging, and line of best fit methods do a reasonably good job calculating the distance while in 
motion but do a poor job while idle. On the other hand, the speed method does a poor job 
calculating distance while in motion but does a great job calculating distance while idle. Given 
this dichotomy, we propose a filter that retains the accurate distance calculation of the non-speed 
methods when in motion while filtering out data when idle. The calculation methods will remain 
the same, but if the speed reading is below a certain threshold, the GPS update will be filtered 
out. The threshold value was determined by looking at the average speed value calculated from 
the idle trials. From these trials the threshold value chosen for the GPS data filter was 0.6 meters 
per second (1.3 MPH). If any speed is below 0.6 meters per second the update will not be 
considered in the overall distance calculation.  

DATA FILTER RESULTS 

The distance calculation with the GPS data filter was evaluated on the same data that was 
collected from the original experimentation using the GPS data playback explained in previous 
sections. See Figure 18 for the distance calculation results with the GPS data filter. The most 
important result is that all distance calculation methods had nearly zero distance calculated for 
the idle test. To better view how the distance calculation changed with and without the GPS data 
filter the percent improvement was calculated for each distance calculation method with the filter 
and without the filter: See Figure 17.  
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Figure 10: Percent improvement of the accuracy of the distance calculation with the filter over the distance calculation without 
the filter 

 

The filter showed improvement for the idle trials for every method except the speed method. 
However, since we are only using the speed value as a threshold, this is not an issue.  

The averaging method saw a decrease in accuracy for both biking and walking. This implies that 
the averaging method underestimates the overall distance. For the biking trial, the reason the 
averaging method without the filter was so accurate was because the distance while stopped was 
being added to the overall distance. Had those stops been longer the averaging method would 
begin to overestimate the distance. With the filter this error was filtered out leaving the total 
distance calculated shorter than without the filter, resulting in a decrease in accuracy.  

The line of best fit method saw in increase in accuracy for biking but a decrease in accuracy for 
walking. The line of best fit method with both an n value of 5 and 10 overestimated the distance 
without the filter. Filtering out the error generated by the stops resulted in a distance extremely 
close to the actual distance traveled. The line of best fit method with an n value of 5 had an 
average error of 0.0256 miles for a 4.12 mile route. However, there was a decrease in accuracy in 
the walking trials. Our hypothesis is that we may not be able to use just a single speed value 
threshold for all activities. If a person is biking then .6 meters per second looks good. If they are 
walking, another value may be needed. We discuss this further in section 6 on Future Work. 
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Figure 11: Results of the distance calculation with the GPS data filter for (a) biking, (b) walking, and (c) idle 
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The raw GPS data method saw an increase in accuracy for both the biking and walking trials. 
The raw GPS data method does not suffer from the smoothing effects that the averaging and line 
of best fit methods do. The filtering for the biking trials filtered out the updates while stopped. 
This decreased the total distance traveled. Without the filter this method overestimated the 
overall distance traveled. With the filter the overall distance calculation still overestimated, but 
not by as much. Because the raw GPS data method does not suffer from the smoothing effects 
like the averaging and line of best fit methods do, the walking distance calculation is highly 
accurate, with an average error of 0.024 miles for a 1 mile route. 

We chose to use the raw method filtered at .6 meters per second as the best compromise between 
biking and walking and used that method in the trials we discuss next. 

5.0 PROJECT RESULTS 
Our first Bike Connect box has been operational since May 15th, 2018 at the intersection of 18th 
and Alder in Eugene, Oregon. Figure 19 shows the major grouping of phases into 4 classes: (a) 
phases for cars and peds traveling E/W, (b) phase for car traveling South, (c) phase for bikes 
traveling N/S, and (d) phase for pedestrians traveling N/S. The current form of our box is capable 
of requesting greens for 4 separate phases. For this project, the box is connected solely to the 
bike-phase that has its own bike-light (panel c). 

 

Figure 19: The phases at 18th and Alder 

Because this project involved a 3rd party (us) installing a control system onto an existing 
municipal traffic signal, there was a concern with having our system create unintentional issues 
with non-bike phases, e.g., erroneously place calls on the bike phase when no bike is present and 
hence delay other phases unintentionally. To mitigate this concern, we gave the City a virtual 
‘kill’ switch, which they could activate from their own computers. When activated, our system 
will go into a sleep state. This was tested to the City’s satisfaction. To date, the City has had no 
need to use the switch. 
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The app was distributed to 10 testers who regularly ride the Alder Street corridor. We asked 
them to record (in a notebook) on each of 6 round trips (12 samples): (a) whether they received a 
green bar, (b) where the green bar appeared in relation to the existing in-pavement advanced loop 
(before reaching the loop, at the loop, after reaching the loop) and (c) whether they were forced 
to stop to wait for a green. We instructed them to ride at their normal pace. The system worked 
as intended with the following basic results taken from the 120 samples: 

• The app’s simple, color-coded indicators worked as expected: they allowed the cyclist to 
see (via a handle-bar mounted phone holder) the status of communication between app 
and traffic signal and whether a virtual call had been sent and acknowledged. 

• When pedaling at their preferred speed, riders obtained a green bar before reaching the 
in-pavement advanced loop. We suspect, and have reported to the City Traffic staff, that 
the advanced loop placement is based on an average speed that is below what is actually 
seen along this corridor. 

• In terms of the cyclist receiving a green light upon arrival, 74% of the time (89 samples) 
the rider saw a green bar and was able to proceed through the intersection uninterrupted. 
In 26% of cases (31 samples), the rider saw a green bar but was forced to stop. The 
feedback from riders was that they had missed a green light and were forced to wait for 
other phases to cycle back to the bike phase. We hypothesize that if we had more data 
about the signal, we could guide the rider in adjusting his or her pedaling speed to avoid a 
stop. For instance, if we knew the current active phase and its start time, and what follow-
on phases were queued up, we could predict the time in the future when the bike phase 
will become active again. Using the rider’s speed and distance, we could then suggest a 
change in speed that will get the rider to the intersection seeing a green. We are exploring 
this idea further in a separate NITC project. At the time of this project, we had no access 
to this type of controller data. 

Our results demonstrate that purposefully designing systems to enhance the efficiency and 
comfort of people on bike via connected infrastructure communication is possible, can be done 
by easily retrofitting existing traffic system control systems, and can be done at relatively low 
cost.  This is a much different approach toward most smart cities and connected and autonomous 
vehicle discussions where bikes are seen as objects to ‘see’ and avoid rather than modes of 
transport that should be planned deliberately for. 

6.0 FUTURE WORK 
To further refine the distance calculation, a fruitful possibility is changing the distance 
calculation methods based on what activity is being performed. Our results show that different 
calculation methods produce more accurate results depending on the activity being done. The 
accelerometer could be used to predict what activity is currently being performed and adjust the 
distance calculation method to choose the most accurate version for that activity as explained in 
(Ravi, Dandekar, Mysore, & Littman, 2005).  
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We chose a GPS data filter threshold by observation. This gave us satisfactory results for our 
trials, but also questions about whether the value will hold on different trial sites. More 
generally, there is work to be done on scaling our approach to (a) non-university sites, and (b) 
different hardware/software mixes than the iOS/Google mix that we chose. Most recently we 
have begun to study intersections close to Elementary and Middle Schools in Springfield 
Oregon. Our goal is to have our users be kids riding to and from school. The Springfield sites 
have a much broader range traffic flow than our 18th and Alder site. And the hardware/software 
mix is now Android/Google. We have just begun to establish testing routes in this new 
environment. 

We noted that at the time of this project we had no access to controller information in real-time, 
e.g., what is the currently active phase, how long has it been active. However, during fall of 2018 
the Eugene Transportation Office purchased a license from McCain Systems to obtain a limited 
real-time view of many of the signals in Eugene, including ours at 18th and Alder. The 
information we can obtain, in real-time, is the current active phase and when it became active. 
What we are missing from McCain is a view of what phases are queued. Nevertheless, working 
with the active-phase information, we believe we can improve the request-timing of our app. We 
are taking on this challenge as part of a separate but related NITC project, Fast Track: Allowing 
bikes and pedestrians to participate in a smart-transportation system (#1160). 

This project is part of a larger goal to create and test a comprehensive, low-cost, ubiquitous 
system that brings cycling into the smart and connected communities’ framework, focusing in 
four key areas: (1) Develop transportation scenarios for the challenges that children face when 
biking to school and evaluate those scenarios in a bicycle simulation lab. (2) Develop technology 
that will address those challenges by tapping into the larger smart-transportation infrastructure 
through an inexpensive active transportation device (Bike Connect) and, at the same time, extend 
that infrastructure to open up a new world of bike-friendly features (through the Bike Connect 
Device). (3) Tie scenarios, simulation and technology development together in a new agile 
framework especially suited for domains where field tests are problematic. (4) Demonstrate the 
suitability of our approach by focusing on four schools that are diverse both in the student body 
and the geographical challenges they present (as discussed above). This project addresses task 2. 
Current and future work is targeted toward the remaining 3 tasks. 

7.0 CONCLUSION 
We have demonstrated that it is possible to link active transportation modes into a V2X 
environment. We developed a Bike Connect box that is inexpensive. We then developed an app 
for a Bike Connect device (iPhone) that uses GPS information to place a request for a green 
bike-light. We linked box and device up through the Particle Cloud. 
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We explored the possibility of providing a bike computer that could act as the Bike Connect 
device, eliminating the need to have a phone with a monthly cell plan. We prototyped a computer 
that centered on the Particle Electron, the same computer used in our box. While the computer 
components were relatively inexpensive (less than $150), we were unable to find an inexpensive 
power supply to meet our needs. However, we remain interested in the idea and will continue to 
track the availability of an inexpensive power supply. We are also in discussion with JUMP 
Bikes, which recently opened bike-sharing in Eugene. Our goal is to make their bike computer, 
powered by a solar panel, a Bike Connect device. 

A large portion of our effort focused on the use of GPS to effectively calculate distance traveled 
with low speed activities. All the methods tested, except for the speed method, yielded consistent 
results that were acceptably close to the actual distance traveled with some methods being 
slightly more accurate than others. While the speed was not effective at calculating distance, it 
was effective at providing a means to filter out data while not in motion. However, it was not 
found that a single method is clearly the best at calculating distance for all types of activity. 
Biking saw the line of best-fit method with a n value of 5 being the most accurate method while 
walking saw the raw GPS method as being the most accurate. There are many factors that play 
into which method will be best for a given situation. These factors are things such as the average 
speed of the activity, the typical type of path taken (straight lines or winding paths), and the type 
of surrounding in the area the activity is typically performed in, e.g., if the activity will occur 
near buildings this can have an impact on the overall distance calculation. Ultimately it comes 
down to choosing the method that will best suited for the expected use cases of the application. 

One additional innovation of the project is that it recognizes that V2X technology does not have 
to be hidden behind company walls or reserved only for researchers at universities. Instead, 
developing V2X technology can be made an open project available to anyone, and in particular, 
students wishing to learn more about the Internet of Things and transportation. To demonstrate, 
as a separate project we developed a set of video lessons that provide a clear and detailed 
roadmap on giving students a chance to explore V2X technology and, in the end, produce 
something that can be used in their own community, i.e., the circled Bike Box in figure 1. This 
related project can be referenced at Project Phenom (nitc.trec.pdx.edu/research/project/1072). It 
contains course topics on:  

1. Doing electronic (solderless) breadboarding to connect a modern Internet of Things 
device, a cellular embedded computer, into the heart of their system.  

2. Demonstrating how the embedded computer (a particle electron) can easily control 
relays, which provide the virtual push-button.  

3. Packaging up their system into a container that can be placed on a signal pole.  
4. Lessons on how to employ C++ and object-oriented programming to control the electron 

from the cloud.  

When completed, a student will have built a powerful V2X system that is ready to be employed 
at a signal in their community. 

 

 

https://nitc.trec.pdx.edu/research/project/1072
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